
Conformal invariance and self-avoiding walks in restricted geometries

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1984 J. Phys. A: Math. Gen. 17 L933

(http://iopscience.iop.org/0305-4470/17/17/005)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 30/05/2010 at 18:16

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/17/17
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 17 (1984) L933-L938. Printed in Great Britain 

LE’ITER TO THE EDITOR 

Conformal invariance and self-avoiding walks in 
restricted geometries 

J L Cardyt and S RednerJ; 
Center for Polymer Studies4 and Department of Physics, Boston University, Boston MA 
02215, USA 

Received 2 August 1984 

Abstract. The predictions of conformal invariance for the statistics of self-avoiding random 
walks restricted to both semi-infinite and wedge-shaped geometries are tested by extrapolat- 
ing exact enumerations. Close agreement is found, both for the angular distribution of 
the end-to-end vector, and for the dependence of the critical exponent y2  on the opening 
angle of the wedge. 

Conformal invariance is believed to hold at the critical point cf isotropic systems with 
short-range interactions (Polyakov 1970, Wegner 1976). It may be used to understand 
the effects of different geometries on the critical correlations (Cardy 1984a, b). In this 
letter we test some of these predictions for self-avoiding random walks (SAWS), which 
are related to the n + 0 limit of the n-vector model (de Gennes 1979). 

We first discuss a d-dimensional bulk geometry, bounded by a planar (d  - 
1)-dimensional free surface, considering d = 2 for simplicity (figure l (c)) .  Choose 
Cartesian coordinates (x, y )  so that the surface lies along y = 0. According to the 
theory of surface critical phenomena (Binder 1983), the correlation function at the 
critical point between a spin on the boundary at (0,O) and one in the bulk at ( r  sin 0, 
r cos e) has the form 

( 1 )  G( r, e, T,) - r-v-f(cos e ) ,  

as r + 00 at fixed 8. This is valid for cos 8 = x/ r > 0. However, for e = 7712, G(  r )  - rpvl1, 
and in order to achieve this r-dependence the angular function must vary as 

f(cos e) -constant (cos O ) v ~ i - v ~ ,  (2) 

as cos 8 + 0. It is a consequence of conformal invariance that this &dependence is 
valid for all values of 8. To see this, let z = x +iy and consider the analytic function 

(3) 
which maps the surface Im z = 0 into itself. The point ( r ,  e)  is mapped into (r/cos 8,O). 
Under such a conformal transformation, the correlation function (z) at T, satisfies 

(4) 

w( z )  = r z / (  r - z sin e), 

G( z )  = Iw’(O)I‘’’I w’(z)1”’*G[ w( z ) ] ,  
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I d )  l e i  

Figure 1. The various wedge geometries discussed in the text. 

where 7 is the bulk exponent. Using the form ( 1 )  we find after a little algebra 

 COS e )  =f(i)(cos e)"--", ( 5 )  

which is equivalent to ( 2 )  extended to all values of 8, since 2v1 = 7 + qIl (Binder 1983). 
Note that since we us.d only a special conformal transformation (fractional linear 
mapping) to derive (5) it is in fact valid for general dimension d (Cardy 1984b). 

We now examine the consequences of these results for SAWS in the semi-infinite 
geometry of figure l(c).  The total number of SAWS of N steps beginning at (0,O) 
which terminate in a unit area at (I, e )  is given by 

L 

J d T  eNTG(r, e, T ) .  

For T #  T,, G has the scaling form ( - " ~ 4 ( r / t ,  e )  where ( = [( T,- T ) /  TJ" .  If we 
define PN(6) d e  to be the number of SAWS of N steps which end somewhere in the 
wedge (e, 8 +de) ,  then 

For N +. 03, the dominant contribution will come from r<< (, where the 8-dependence 
of 4 is given by (5). We therefore predict 

PN( e )  - NY1- 'pr(Cos e)"--', @ a )  

for N +. 03 at fixed 8, where p, = eTc, and yI  = 4 2  - vl). Exact enumerations of the 
total number of such walks (PN(e) integrated over e )  have been made for the square 
lattice (Barber et a1 1978) and the triangular lattice (De Bell and Essam 1980), leading 
to the estimates yI  = 0.945 f 0.005 and yI = 0.956?::::2 respectively. These estimates 
should be compared with the exact value yI  =61/64=0.9531 . . . obtained by Cardy 
(1984b). 

In order to test the predictions of (8), we have enumerated all SAWS of up to 23 
steps on the square lattice for which the starting point is on the planar interface (cf 
table I ) ,  extending the data of Barber et a1 by two terms. As a preliminary, we have 
analysed the series for the total number of SAWS in order to obtain an independent 
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Table 1. Number of self-avoiding walks for N steps which start from the apex of a wedge 
of opening angle a. 

1 1 
2 2 
3 3 
4 8 
5 14 
6 36 
7 70 
8 177 
9 372 

10 942 
I I  2 056 
12 5 222 
13 I I  736 
14 29 878 
15 68 576 
16 I75 038 
17 408 328 
18 1 044 533 
19 2 468 261 
20 6 326 688 
21 15 107 015 
22 38 791 865 
23 93 432 564 
24 240 296 399 
25 583 001 850 
26 1501 520 574 
27 3665 682 736 

2 
4 

I O  
24 
60 

146 
366 
912 

2 302 
5 800 

I4 722 
37 368 
95 304 

243 168 
622 518 

I594622 
4 094 768 

10 521 384 
27 085 436 
69 768 478 

I79 982 688 
464 564 220 

1200563864 
3104 I92 722 
8034256412 

3 
7 

19 
49 

131 
339 
899 

2 345 
6 199 

16 225 
42 81 1 

112285 
296 05 1 
777 41 1 

2 049 025 
5 384 855 

14 190 509 
37 313 977 
98 324 565 

258 654 441 
681 552 747 

1793492411 
4725856129 

4 
I O  
28 
74 

202 
534 

1442 
3 822 

I O  258 
27 202 
72 718 

192 840 
514228 

1 363 342 
3 629 316 
9 619 264 

25 575 326 
67 765 590 

180 001 304 
476 807 826 

1265 567 600 
3351529410 
8890 447 682 

3 
9 

25 
69 

189 
515 

1395 
3 767 

10 147 
27 273 
73 191 

196 093 
524 877 

1 403 127 
3 748 503 

10 004 097 
26 686 881 
71 131 217 

I89 527 987 
504 650 261 

1343 361 337 
3573930495 
9506 241 449 

estimate of yI.  By using square-root ratio analysis, together with the best available 
estimate for the bulk value of ~ ~ ~ 2 . 6 3 8 5  (Sykes et a1 1972, Guttmann 1984), we 
conclude that yI  = 0.955 * 0.003. The quoted error bar on y ,  is merely a subjective 
estimation of a possible error based on the scattering of the various residue values in 
a dlog Pad6 analysis. 

In order to test the &dependence in (sa), we note that for d = 2, the exact values 
for vL and 7) are known, leading to the prediction 

pN(  e )  dB - pcNN-3’64(~~~ 0)25’48 d e  (8b) 

for the number of N-step SAWS which terminate in the angular range (e,  8 +de) .  In 
terms of this angular distribution, the moments 

(cos2j e)- [:2 coszj e p N ( e )  d e  ( P N ( @ )  de)-‘ (9a) 

can be expressed in terms of gamma functions and subsequently reduced to the closed 
form 

(cos2je)=[ (a+l ) (a+3)  . . . (  a+(2 j - l ) ) ] / [ ( a+2) (a+4)  . . . (  a+2 j ) ] ,  (9b) 
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with a = 25/48 from (8b) .  The predicted values of these moments for j = 1-4 are shown 
in column I1 of table 2 .  

Table 2. The moments (cos’’ 0) of the angular distribution of end-points as N - m :  ( I )  
Extrapolation results. These numbers carry an error of *0.01: (11) exact predictions of 
conformal invariance; (111) moments for an isotropic distribution and ( I V )  mean-field 
theory (free random walks). 

j I I 1  I11 IV 
~~ ~ 

I 0.610 0.6033 0.5000 0.6667 
2 0.479 0.4698 0.3750 0.5333 
3 0.406 0.3978 0.3125 0.457 I 
4 0.359 0.3511 0.2734 0.4063 

From our enumeration data for the total number of SAWS which start at the origin 
and terminate at a given point (x, y ) ,  we have calculated (cos2’ 6 )  at each value of N 
and extrapolated to N + CO by a Neville-type analysis. These estimates are shown in 
column I. For each of these values, we tentatively assign an error of 10.01 based on 
the scattering of estimates by various methods of analysis. Even though there appears 
to be a small systematic difference between the series estimates for the moments and 
the predictions of conformal invariance, the overall agreement is quite reasonable, 
particularly in view of the values of a given by other approximate theories. If the 
surface had no effect, so that the distribution of end-points would be isotropic (corre- 
sponding to a = 0) the moments shown in column I11 would be obtained. On the other 
hand, neglecting the self-repulsion of the walks (mean-field theory) would give a 
dipolar distribution, resulting from an image effect. This corresponds to a = I ,  and 
the resulting moments are shown in column IV. 

In addition, we have examined the N-dependence of various measures of mean 
end-to-end distances to test whether the interface affects the correlation length exponent 
v. Such a study was performed previously by Guttmann et a1 (1978) for the half- and 
quarter-space geometries. We considered the mean-square end-to-end distance ( R k ) ,  
and the mean-square displacements parallel and perpendicular to the interface ( R i N }  
and respectively. These quantities all appear to diverge with exponent values 
2 u  very close to the expected bulk value of 1.50. Moreover, the asymptotic value of 
the ratio ( R i N ) / ( R : N )  provides an independent test of the angular dependence of the 
two-point correlation function. Our extrapolations of this ratio are in good agreement 
with the value predicted by conformal invariance. 

Further tests of conformal invariance can be obtained by considering SAWS in a 
wedge-shaped geometry with opening angle a. That the correlation functions involving 
spins near the corner should exhibit critical exponents dependent on a was pointed 
out by Cardy (1983) in the context of mean-field theory and the &-expansion. For 
d = 2 ,  this geometry is related to the surface case by the conformal mapping w = z ~ ’ ~ .  
It is then straightforward to apply (4) to obtain for the wedge geometry 

(10) 

(11) 

p N (  6 )  d6 - N Y 2 ( 0 L ’ - 1 ~ r [ ~ ~ ~ (  d / a ) ] ” - - ”  d6, 

Y 2 ( f f )  = ( r / a  1 %  - (T/ f f  - 1 )(  v + Y / 2 ) .  

where the boundaries of the wedge are at 6 = 1 a / 2 ,  and 
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To test these predictions, we have enumerated SAWS on the square lattice with the 
following wedge geometries: a = 714, 7712, 3 ~ 1 2 ,  and 2n, the last case corresponding 
to SAWS which originate at one end of an excluded semi-infinite line (cf figure 1). We 
then employed a number of standard extrapolations to estimate the values of pc and 
yz( a ) .  One expects that pc should be independent of a, that is, the connective constant 
should coincide with the bulk value. This has been shown rigourously for a > r by 
Whittington (1975) (see also Hammersley et al 1982, Whittington and Hammersley 
1984). From our analysis we find pc(n /4)  = 2.625, pc(n/2)  = 2.635, and values of 
pc( a )  3 2.6375 for larger a, very close to the bulk value for pc. The weak a-dependence 
strongly suggests that asymptotically pc is independent of a and equal to the bulk value. 

Our estimates for y , ( a )  are shown in table 3, and compared with the rigorous 
predictions of conformal invariance. The case a = r/4 is somewhat pathological due 
to the lack of symmetry of the square lattice with respect to the 0 = 0 axis. However, 
for the other geometries, the series estimates strongly support the conformal invariance 
result. 

Table 3. Comparison of the series estimates and the conformal invariance predictions for 
the exponent y , ( a )  governing the total number of N-step walks. pLYNy2-’, in a wedge of 
opening angle a.  

Y A a )  
Estimated Predicted 

Xi4 -0.350* 0.150 -29164 z -0.453 
TI2  0.510*0.005 31/64-0.484 
rr 0.955 * 0.003 61/64-0.953 
3rr/2 I .  100 * 0.002 71/64- 1.094 
2rr I .  I89 f 0.002 76/64- 1.188 

Finally we have looked at the angular moments (cos2’( ne/ a ) )  for the various 
geometries. These moments should coincide with those quoted in (9b) forthe half-space 
geometry because the range of angular integration and the angular variable itself are 
rescaled in the same way compared to the half-space expression (9a).  Our analysis 
of the first four moments does suggest that for a given j the estimates for differing 
geometries coincide. There are some weak dependences of a given moment on the 
geometry, which we attribute to non-asymptotic effects. 

It is also worth mentioning that the divergence of the distance measures mentioned 
for the half-space problem all appear to be governed by the bulk value of the correlation 
length exponent with the possible exception of the (pathological) n / 4  wedge geometry. 

In conclusion, we have shown that the predictions of conformal invariance for 
SAWS near a boundary are verified by exact enumeration methods, to within numerical 
accuracy. It would be interesting to extend these results to other quantities such as 
monomer density correlations in a long macromolecule near a surface. 

One of us (JLC) thanks the Center for Polymer Studies and the Department of Physics, 
Boston University, for its hospitality. 

Note. After this paper was completed, we learned of work by Guttmann and Torrie 
(1984) in which results similar to some of those given in this paper are obtained. We 
thank Dr Guttmann for communicating his results prior to publication. 
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